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Abstract. It is known that in disordered semiconductors with purely exponential energy
distribution of localized band-tail states, as in amorphous semiconductors, all transport
phenomena at low temperatures are determined by hopping of electrons in the vicinity of
a particular energy level, called the transport energy. We analyse whether such a transport
level exists also in materials with densities of localized states (DOSs) different from the purely
exponential one. We consider two DOS functionsg(ε) ∼ exp{−(ε/ε0)

λ} with λ = 2, typical
for polymers, heavily doped semiconductors, and, probably, liquid semiconductors andλ = 1

2 ,
typical for mixed crystals. It is shown that in both cases the transport energy exists, implying that
it also exists for all intermediate forms of the DOS. Special attention is paid to the dependences
of the transport level and of its width on the DOS parameters and temperature.

1. Introduction

In various disordered systems, such as liquid and amorphous semiconductors, doped
crystalline materials, semiconductor alloys, and polymers, some electronic states at zero
temperature are localized. If the Fermi level is located in the region of localized states
the conductivity arises either from thermal excitation of carriers across a mobility gap into
extended states or by hopping processes. The former mechanism must be inherent at high
temperatures, while the latter one dominates electron transport at lower temperatures (Mott
and Davis 1979, Enderby 1978). The borderline temperature which separates these two
mechanisms depends on material parameters. Recently Fortneret al (1995) claimed that
the hopping mechanism dominates the transport properties of various liquid semiconductors
even at rather high temperatures (T ∼ 1000 K), which makes the study of hopping transport
especially interesting. While thermal activation of carriers into extended states can be easily
interpreted theoretically (Overhof and Thomas 1989), hopping transport via localized band-
tail states is rather difficult for a theoretical study, being crucially dependent on the density
of localized states (DOS) (Shklovskii and Efros 1984). Computer simulations have mostly
been used so far to study this mechanism. They provide some useful information on transport
details, but do not allow a general description of the phenomenon.

Recently the very useful general concept of the so-called transport energy has been
developed to describe hopping transport in band tails with purely exponential DOS. Such
DOS can be described as

g(ε) = (N0/ε0) exp(−ε/ε0) (1)
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whereε0 is the tailing parameter,N0 is the total concentration of localized tail states, and
the localization energyε is measured positive from the mobility edge (ε = 0) towards the
gap centre. This shape of the DOS is widely assumed for amorphous materials.

The crucial role of a particular energy level in the hopping transport of electrons via
localized band-tail states with the DOS of (1) was first recognized by Grünewald and Thomas
(1979) and Gr̈unewaldet al (1979) in their analysis of equilibrium variable-range hopping
conductivity. This problem was later considered by Shapiro and Adler (1985), who came to
the same conclusion as Grünewaldet al, i.e., that the vicinity of some particular energy level
dominates the hopping transport of electrons in the band tail. In addition, they achieved an
analytical formula for this level and showed that its position does not depend on the Fermi
energy.

Independently, a rather different problem of non-equilibrium energy relaxation of
electrons by hopping through the band tail with the DOS described by (1) was solved
at the same time by Monroe (1985a, b). He showed that an electron, starting from the
mobility edge, most likely makes a series of hops downward in energy. This character of the
relaxation process changes at some particular energyεt which Monroe called the transport
energy (TE). The hopping process near and below TE resembles dispersive transport, where
εt plays the role of the mobility edge. The TE of Monroe (1985a, b) in the relaxation
problem coincides exactly with the energy level discovered by Grünewaldet al (1979) and
Shapiro and Adler (1985) for equilibrium hopping transport.

Shklovskii et al (1990) have shown that the same energy levelεt also determines
both recombination and transport of electrons in the non-equilibrium steady state under
continuous photogeneration in the exponential band tails.

We see, therefore, that in the DOS described by (1) this TE determines both equilibrium
and non-equilibrium and both transient and steady-state transport phenomena. It was
recently shown (Baranovskiiet al 1995) why this energy level is so universal that hopping
of electrons in its vicinity dominates various transport phenomena. It is the transport energy,
which maximizes the hopping rate as a final electron energy in the hop between two localized
states, independent of the initial energy.

All derivations of the TE so far have essentially been based on the purely exponential
shape of the DOS. Such a DOS is widely accepted for amorphous semiconductors and the
TE concept has proven to be very useful for describing various transport phenomena in such
materials. The question arises of whether this concept can be generalized for a disordered
system with a DOS different from that of (1). In fact, there are no consistent theoretical
justifications of the purely exponential DOS in any disordered semiconductor. Moreover,
in systems for which the DOS function can be calculated theoretically it differs from the
purely exponential form of (1) (Zittartz and Langer 1966, Halperin and Lax 1966, 1967,
Lifshitz et al 1982, Shklovskii and Efros 1984). The general situation with this DOS is the
following. It is usually reasonable to assume that the distribution of the disordered potential
which leads to the electron localization is Gaussian. This is the case for systems with rather
different kinds of disorder. If this potential can be treated as a classical one, the distribution
of localization energies reflects that of the potential and therefore can be described by
a Gaussian function. This is often the case for, e.g., doped crystalline semiconductors
(Shklovskii and Efros 1984) and organic polymers (Bässler 1993). Such a DOS has been
also suggested for some fluid semiconductors (Popielawskiet al 1979). A Gaussian DOS
has the form

g(ε) = (N0/π
1/2ε0) exp{−(ε/ε0)

2} (2)

where notations are similar to those in (1), but the energyε is measured just from the
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distribution centre (ε = 0), being positive towards deeper energies.
In other cases, the problem of electron localization must be treated quantum

mechanically, i.e., it must be taken into account that the localization energy of electrons
does not coincide with the depth of a potential well in which electrons are localized. In
such a case the distribution function of electron energies (the DOS) differs from that of
the localization potential and usually appears to be a weaker distribution function. This is
known to be the case for crystalline semiconductor alloys (mixed crystals), where the DOS
function is (Baranovskii and Efros 1978)

g(ε) = (N0/2ε0) exp{−(ε/ε0)
1/2} (3)

with the same notations as in (1). It is even reasonable to suppose that DOS distributions
for various disordered systems can be described by functions intermediate between those
in (2) and (3). The challenging question then arises of whether one can extend the concept
of TE, developed just for the DOS of (1), to systems with DOS functions described by (2)
and (3).

This question was recently addressed by Hartenstein and Bässler (1995) for the case of
a Gaussian DOS. The authors used computer simulation and concluded that the results of
the simulations were obscured by oscillation transitions of electrons between energetically
close sites. It is difficult, therefore, to find from their results whether or not the transport
level exists for the chosen DOS of (2).

Below we solve this problem analytically for the two DOS functions described by (2)
and (3). In section 2, a general formalism is given for the derivation of the TE. In sections 3
and 4 we apply it to the DOS functions described by (2) and (3) respectively. It will be
shown that the TE exists in both cases, implying that it exists also for DOS functions
intermediate between those described by (2) and (3). Of course, the transport level depends
strongly on the DOS parameters. Concluding remarks are gathered in section 5.

2. Derivation of the transport energy in a hopping system

In our derivation we assume the simplest form for the hopping rates of electrons between
localized states

νij = ν0 exp(−2Rij/α − (εi − εj + |εj − εi |)/2kT ). (4)

Here νij is the rate for the hop between an occupied sitei and an empty sitej separated
by distanceRij ; α is the decay length of the wave function of the tail states;ν0 is the
attempt-to-escape frequency.

Let us consider an electron in a tail state at energyεi . The median rate of a downward
hop of such an electron to a neighbouring localized state with some energyεj > εi is

ν ↓ (εi) = ν0 exp(−2R(εi)/α) (5)

where

R(εi) '
{
(4π/3)ε

∫ ∞
i

g(x) dx

}−1/3

. (6)

The median rate of an upward hop of such an electron to a neighbouring localized state
with energyεj 6 εi is

ν↑(εi, δ) = ν0 exp(−2R(εi − δ)/α − δ/kT ) (7)

where δ = εi − εj > 0. This expression is not exact, of course. The average nearest-
neighbour distanceR used is based on all states deeper thanεi − δ. For an exponential
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tail this is equivalent to considering a slice of energy of widthε0. This works well for
a distribution that varies slowly compared tokT , but not in general. A more correct and
sophisticated description allows a competition between all states appropriately weighted
with a Boltzmann factor for upward hops (Monroe 1985b, Stoddartet al 1988). For the
shapes of the DOS considered here, this differs from the current derivation by factors of
order unity in the logarithm (Baranovskiiet al 1995). Therefore we use the foregoing
formulation of hopping rates for simplicity and clarity.

We will analyse these hopping rates at a given temperatureT and try to find the energy
differenceδ which provides a fastest typical hopping rate for an electron placed initially at
energyεi . The corresponding energy differenceδ is determined by the condition

∂ν↑(εi, δ)/∂δ = 0. (8)

For the purely exponential DOS, using (1) and (6)–(8), we find that the hopping rate in (7)
has its maximum at

δ = εi − 3ε0 ln[3ε0(4πN0/3)
1/3α/2kT ]. (9)

The second term in the right-hand side of (9) is called the transport energyεt after Monroe
(1985a, b)

εt = 3ε0 ln[3ε0(4πN0/3)
1/3α/2kT ]. (10)

The fastest hop occurs to the state in the vicinity of the transport energyεt , independent of
the initial energyεi , providedεi is deeper in the tail thanεt , i.e. if δ > 0. This coincides
with the previous results of Monroe (1985a, b) and Kemp and Silver (1991). The width
W of the maximum of the hopping rate is determined by the requirement that nearεt the
hopping rateν↑(εi, δ) differs by less than a factor ofe from the valueν↑(εi, εi − εt ). One
finds (Shklovskiiet al 1990)

W = (6ε0kT )
1/2. (11)

For states withεi 6 εt , the fastest hop is a downward hop to a nearest neighbour at some
energyε > εi with the rate described by (5) and (6). This means that electrons in the
shallow states withεi < εt hop normally into deeper states withε > εi , whereas electrons
in the states withεi > εt hop usually to states nearεt in the energy intervalW determined
by (11). This result implies thatεt must play a crucial role in those phenomena which are
determined by hopping of electrons in band tails.

3. Transport energy in a Gaussian DOS

A Gaussian-shaped DOS is usually assumed for random organic solids such as polymers
(Bässler 1993) and is known to be valid for most cases in doped crystalline materials
(Shklovskii and Efros 1984). Recently it was claimed that replacement of the exponential
DOS by a Gaussian one precludes an analytic solution of the TE problem, and a Monte
Carlo computer simulation was carried out, which brought, however, a rather obscure result
(Hartenstein and B̈assler 1995). Indeed, for a Gaussian DOS it is not possible to carry out
an analytic derivation of the TE described in section 1 up to the final result. We show below
however that it is possible to derive analytically an equation for the transport energy in a
Gaussian DOS, which can be solved numerically. This method requires a computer just for
the numerical solution of the derived equation and not for a Monte Carlo simulation.
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Substituting (2) into (6)–(8) one obtains the following expression for the quantity
x = (εi − δ)/ε0:

ex
2

(∫ ∞
x

e−t
2
dt

)4/3

= 2

3

(
4π

3
N0α

3

)−1/3

π1/6kT

ε0
. (12)

It is noteworthy that the very structure of this equation implies the existence of the
transport energy for the Gaussian DOS. Indeed, if we denote the solution of (12) as
x = x0(T ,N0, α, ε0), then the quantity

εt = ε0x0(T ,N0, α, ε0) (13)

is the transport energy, according to its definition in section 1. It is clear from (12) that the
value ofεt depends only on two parametersN0α

3 andkT /ε0.
The transport energyεt maximizes the hopping rate as a final electron energy in a

hop between two localized states independent of the initial energy. The sharpness of
this maximum determines the width of the transport path. Mathematically this width is
determined by the requirement that nearεt the hopping rateν↑(ε, δ) differs by less than a
factor of e from the valueν↑(ε, ε − εt ). After solving (12) we have put the solution into
(7) and found the widthW of the transport path according to the above definition. The
results of the numerical solution of (12) are shown in figure 1 along with the widthW .
The energy in figure 1 is measured positive downward from the centre of the distribution
(ε = 0). In figure 1(a) results are shown forN0α

3 = 0.02, which is the upper limit ofN0α
3

for the absence of the extended states in the DOS distribution (Shklovskii and Efros 1984).
The transport levelεt is located in the lower part of the DOS at almost all temperatures
kT < ε0. The widthW of the transport level remains small(W < ε0) up to kT ≈ 0.4ε0.
With decreasing concentration of states in the band tail, i.e., decreasing parameterN0α

3, the
transport energyεt shifts at higher temperatures to the upper half of the DOS distribution
(i.e., becomes negative) as is clearly seen in figure 1(b) forN0α

3 = 0.001. This occurs
because at low concentrationsN0 it is favourable for electrons to be activated to higher
energies, increasing the concentration of available hopping sites. This reflects the very
nature of the TE and of the variable-range-hopping processes in general.

The results in figure 1 show that the concept of TE provides a good approximation for
the description variable-range hopping in a Gaussian DOS at thermal energies smaller than
the tailing parameterε0, i.e., in the case in which transport is via hopping in the band tails.

4. Transport energy for DOS g(ε) ∼ exp{ − (ε/ε0)
1/2}

Recent advances in epitaxial crystal growth techniques allow the fabrication of a variety
of optoelectronic and microwave devices having a semiconductor alloy (a mixed crystal)
as an important constituent. Because of the randomness in the distribution of the alloy
components in the crystalline lattice, mixed crystals possess pronounced band tails near the
mobility edges. The DOS distribution in such tails caused by Gaussian spatial fluctuations
is described by (3) (Baranovskii and Efros 1978). It is, of course, of high interest to analyse
hopping transport in such a system. In the following we check whether the concept of
transport energy is applicable in this case.

Substituting (3) into (6)–(8) one obtains the following expression for the quantity
x = (εi − δ)/ε0:

ln{(3ε0/kT )(4πN0α
3/3)1/3} = x1/2/3− 4

3 ln{1+ x1/2}. (14)

The structure of this equation implies the existence of the TE. Indeed, ifx0(kT /ε0, N0α
3)

is the solution of (14), the quantityεt determined by (13) is the transport energy.
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(a)

(b)

Figure 1. Temperature dependences of the transport energyεt and its width (shown by vertical
lines) for a Gaussian DOS: (a)N0α

3 = 0.02; (b)N0α
3 = 0.001.

In figure 2 solutions forεt are shown along with the widthW of the transport level
analogous to those shown in figure 1 for a Gaussian tail. Energyε in figure 2 is measured
positive from the mobility edge towards the gap centre, as in (3). It is clearly seen that
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(a)

(b)

Figure 2. Temperature dependences of the transport energyεt and its width (shown by vertical
lines) for the DOS of (3): (a)N0α

3 = 0.02; (b)N0α
3 = 0.001.

formally the transport energy exists in the DOS of (3). However it is located extremely
deep in the tail(εt � ε0) for temperatures of interestkT < ε0 at which transport is via
hopping in the band tails. According to the derivation of the transport energyεt , electrons
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in the shallow states withε < εt make hops downward in energy to a nearest neighbour
with the energy deeper thanε. Such energy-loss hopping is not influenced significantly by
temperature and can be well described by a simple model (Shklovskiiet al 1989). Our
result thatεt is located very deep in the tail justifies the application of this simple approach
to the hopping in the DOS of (3) in a very broad temperature rangekT < ε0.

5. Conclusions

It is shown that the concept of TE provides a useful tool to describe transport processes
not only in systems with purely exponential DOS (e.g., amorphous semiconductors), but
also in systems with a Gaussian DOS (e.g., polymers) and in systems with the DOS of
(3) (e.g., semiconductor alloys), thus implying that it is also valid for systems with a DOS
intermediate between those of (2) and (3). This result is obtained analytically and it does
not suffer from complications found in recent Monte Carlo computer simulations.

While for a Gaussian DOS the transport energy is located in the central part of the DOS
distribution at DOS parameters and temperatures relevant to those in experimental studies,
the position of the TE for the DOS of (3) appears to be extremely deep in the tail, implying
that the simplest energy-loss hopping model is a good description of transport properties in
systems with such a DOS.
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